Самостоятельная работа студентов №1. (СРС №1)

Тема: Операции над векторами.

<u>Щель</u>: Проверить на практике знание понятия вектор, закрепить умение и навык вычислять сумму векторов, разность векторов, произведение вектора на число, находить угол между векторами, скалярное произведение векторов, определять перпендикулярность векторов.

Обеспечение практической работы:

Теоретический материал методической рекомендации к практической работе.

Учебник. Богомолов Н.В. «Математика». – М.: Дрофа, 2006.

Учебник Атанасян «Геометрия 10-11». – Москва: Просвещение, 2012.

Индивидуальные карточки с вариантом практической работы.

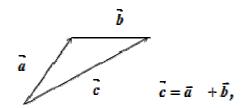
Теоретический материал и примеры решения задач по теме «Векторы в пространстве, операции над векторами».

Вектором $\overline{\boldsymbol{AB}}$ называется направленный отрезок с началом в точке А и концом в точке В.

Нулевым вектором \vec{o} называется вектор , у которого начало и конец совпадают, т.е. A=B . Вектор \vec{o} не имеет направления.

Модулем вектора AB называется его длина. Два вектора называются равными , если их направления совпадают, а длины равны.

Углом между двумя векторами называется наименьший угол, на который нужно повернуть один из векторов до совпадения с направлением второго.


Два вектора называются **коллинеарными**, если они лежат на одной или на параллельных прямых. Три вектора называются **компланарными**, если они лежат в одной или в параллельных плоскостях.

Линейные операции над векторами.

Сложение векторов.

Суммой векторов \vec{a} и \vec{b} называется вектор $\vec{c} = \vec{a} + \vec{b}$, который получается при совмещении конца вектора \vec{a} с началом вектора \vec{b} . Тогда началом вектора \vec{c} будет начало вектора \vec{c} , а концом вектора \vec{c} - конец вектора \vec{b} .

а) Сложение векторов по правилу треугольника:

Свойства суммы векторов:

1) Свойство коммутативности: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

2) Свойство ассоциативности: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) = \vec{a} + \vec{b} + \vec{c}$

3)
$$a + 0 = a$$

4) $\vec{a} + (-\vec{a}) = \vec{0}$; где $(-\vec{a})$ - вектор противоположный \vec{a} .

Умножение вектора на число.

Произведением вектора \vec{a} на число λ называется вектор \vec{b} , такой, что $\vec{b} = \lambda \times \vec{a}$, а его направление совпадает с направлением вектора \vec{a} , если $\lambda > 0$ и противоположно ему, если $\lambda < 0$. $(-1) \times \vec{a} = -\vec{a}$

Координаты вектора.

Рассмотрим прямоугольную систему координат в трехмерном пространстве ОХҮZ. Вектору \overrightarrow{AB} в данном пространстве соответствует тройка чисел (x,y,z), являющихся проекциями вектора на оси Ох, Оу, Оz. Эти числа называются координатами вектора \overrightarrow{AB} .

Числа получаются как разность соответствующих координат точек $A(x_0, y_0, z_0)$ и $B(x_1, y_1, z_1)$:

$$x = x_1 - x_0$$
, $y = y_1 - y_0$, $z = z_1 - z_0$

а модуль вектора , равный его длине, вычисляется по теореме Пифагора:

$$\left| \overrightarrow{AB} \right|^2 = x^2 + y^2 + z^2$$

Разложение вектора по координатным осям.

Пусть вектор $\vec{a} = (\vec{a}_x, \vec{a}_y, \vec{a}_z)$ задан своими проекциями на оси координат Ох, Оу, Оz. Выберем на оси Ох вектор $\vec{i} = (1,0,0)$, на оси Оу - вектор $\vec{j} = (0,1,0)$, на оси Оz - вектор $\vec{k} = (0,0,1)$. Они взаимно-перпендикулярны и имеют единичную длину . Векторы \vec{i} , \vec{j} \vec{k} , и называют *ортами* координатных осей .

Вектор $\overline{a_x}$ лежит на оси Ох и его длина равна х , поэтому $\overline{a_x} = x\overline{i}$. Аналогично $\overline{a_y} = y\overline{j}$ н $\overline{a_z} = z\overline{k}$. Сумма этих векторов дает вектор \overline{a} :

$$\overline{a} = x\overline{i} + y\overline{j} + z\overline{k}$$

Пример 1. Найти длину вектора $\vec{a} = 20\vec{i} + 30\vec{j} - 60\vec{k}$.

Pemenue.
$$|a| = \sqrt{20 + 30^2 + 60^2} = 70$$
;

Задачи для самостоятельного решения.

Вариант 1

№	Название операции	Формулы
п/п		
1	Найти сумму векторов	$\vec{a}\{1;-2;3\}, \vec{b}\{4;0;-1\}$
2	Найти разность векторов	$\vec{a}\{4;1;-3\}, \vec{b}\{0;-5;2\}$
3	Найти произведение вектора на число	$\overrightarrow{a}\{-1;3;1\},\;\delta$ — число $\delta=-3$
4	Вычислить координаты середины отрезка	Точка A(1;2; —3) Точка В (-3;4;-1) Точка С- середина отрезка АВ. С(x_c ; y_c ; z_c)
5	Найти координаты вектора	Точка A(5; 0; -3). Точка В (-1;4;-7).
6	Найти длину вектора	$\overrightarrow{a}\{5;1;-1\}$
7	Вычислить скалярное произведение векторов	$\vec{a}\{-2;3;7\}, \vec{b}\{-9;0;2\}$
8	Найти косинус угла между векторами	$\vec{a}\{2;0;1\}, \vec{b}\{-3;1;2\}$
9	При каких значениях т и п векторы коллинеарны?	$\vec{a}\{m; 3; 1\}, \vec{b}\{1; n; 2\}$
10	Проверьте перпендикулярность векторов	$\vec{a}\{-4;0;1\}, \vec{b}\{2;7;8\}$

Вариант 2

Бариант 2			
№п/п	Название операции	Формулы	
1	Найти сумму векторов	$\vec{a}\{2;-3;4\}, \vec{b}\{-1;2;0\}$	
2	Найти разность векторов	$\vec{a}\{4; -5; 7\}, \vec{b}\{3; -1; 2\}$	
3	Найти пароизведение на число	$\overrightarrow{a}\{-2;4;0\},\;\delta$ — число $\delta=-4$	
4	Вычислить координаты середины отрезка	Точка $A(-3:1;2)$ Точка $B(2;-3;1)$ Точка C - середина отрезка $AB.\ C(\mathbf{z}_e;\ \mathbf{y}_e;\ \mathbf{z}_e)$	
5	Найти координаты вектора	Точка A(6; -3; 4). Точка В (1;-4;7).	
6	Найти длину вектора	$\overrightarrow{a}\{7;2;-1\}$	
7	Вычислить скалярное произведение векторов	$\vec{a}\{-3;2;9\}, \vec{b}\{-7;0;3\}$	
8	Найти косинус угла между векторами	$\vec{a}\{4;1;0\}, \vec{b}\{-5;3;1\}$	
9	При каких значениях <i>т</i> и и пекторы коллинеарны?	$\vec{a}\{m; 5; 3\}, \vec{b}\{2; n; 4\}$	
10	Проверьте перпендикулярность векторов	$\vec{a}\{0; -3; 2\}, \vec{b}\{9; 4; 6\}$	